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A B S T R A C T  

We generalize the well-known Sinclair lemma for Hermitian elements, proving 
pointwise versions for generalized scalar operators and unbounded skew- 
Hermitian operators. 

0. Introduction 

Using Bernstein's inequality (see [4, Theorem 11.1.2]): 

(0.1) sup IF(t)[ ~ 1" sup IF(t)l 
IER t E R  

for entire functions F(z) of exponential type ~- bounded on R, Browder [7], 

Sinclair [21] and Katznelson [15] proved the important Sinclair lemma: IIA II-- 
r(A) for Hermitian operators A on a Banach space X (r(-)  - -  the spectral 

radius; see also [5, §26]). 
We develop this idea further, to what seems to be its natural extent, and prove 

here stronger results for a wider class of operators. 
In Theorem 1, we apply an extension of Bernstein's inequality to obtain a 

general pointwise inequality for operators A such that 

Ile"All=O(Itl ") fo rsomep=>0 ( t~R,  Itl--*~). 

In particular: 

(0.2) II mx [l <--II x II r(A + iB, x) 
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holds for any pair A, B of commuting Hermitian operators on X and every 

x E X, where 

(0.3) r(T, x) = lim sup II T"x I1"" 

is the local spectral radius of T at x. 

In Section 2 we prove the pointwise inequalities 

(0.4) [[ Ax 11 <= ]l x ll liminf II A "x ll"", x analytic for A, 

for any unbounded closed skew-Hermitian operator A and 

ellxll liminf (n l la"x  I1""), x geometric for A (0.5) II mx [I <= ~ ,~= 

for any closed dissipative operator A. These inequalities follow from the 

operator versions (Theorem 2) of Landau-Kolmogorov's inequalities for C" 

functions on R and R ÷. 
At the end of the paper we show how r(T, x) defined in (0.3) can be used to 

construct hyperinvariant subspaces for a class of operators. 

1. The local spectral radius and inequalities for generafized scalar operators 

Throughout X denotes a complex Banach space and B(X)  the space of 

bounded linear operators on X. The quantity (0.3) defined for every x E X and 

T E B(X)  is finite, as 

II Z"x II "° --<11 T" I1"" IIx II"" ( ,  =1 ,2  . . . .  ) 

and hence r(T, x) <= r(T) < oo. For every a,/3 ~ C, x, y ~ X it easily follows that 

r(~Z,/3x) = [a I r(Z, x) (1.1) 

and 

(1.2) r(T, x + y)<_--max{r(T, x), r(T, y)}. 

An operator T E B(X)  is said to have the single-valued extension property 

(SVEP) if whenever ( z I - T ) g ( z ) = 0  holds for some X-valued holomorphic 

function g in some open set U C_ C, then g = 0 in U. If T has the SVEP, for 

every x ~ X the holomorphic function (zI - T)-'x has a single-valued maximal 

extension from the resolvent set of T to the open local resolvent set 0r(x). Its 

complement trr (x) = C\or(x)  is called the local spectrum of T at x. One easily 
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sees that 

r(T, x) = sup{[ z 1: z ~ ~ ( x ) }  

for every x E X when T has the SVEP (as r(T, x) is the radius of convergence of 

gx (z) = E~=0 T"x/z  "+~ and ( z I -  T)gx (z) = x when [z [>  r(T, x)). 
Note that the generalized scalar operators considered later in this section and 

the hyponormal operators mentioned in Section 3 all have the SVEP ([10, p. 62], 

[9, p. 131). 
Let g(z) be an entire function. If one of the quantities 

lim sup (log I g(z)l)/I z I; iim sup I g¢"'(0) V/" 

is finite, the other is finite too and they coincide. This number, say z, is called the 

exponential type of g - -  see [4, Ch. 2], [17, Ch. 1]; z is characterized also by the 

property: for every e > 0 there exists M(e) > 0 such that [ g(z)[ - M(e) e c'+ ~̀lzr 
when z E C .  Note that z >=0. The same is true for entire functions g: C---~ X, 

with I" I replaced by [l" I1. 

DEFINITION. An entire function g(z) belongs to the class P, if g is of finite 

exponential type, has no zeros in {Im(z)<0} and 

lim sup (log I g(it)l)/t <= lim sup (log I g( - it)l)/t. 

The next result was proved by Levin [17, IX.11], [4, 11.7.2]. 

THEOREM. Let g be in the class P and of exponential type r. If I F(t)l  - I g(t)l 

on R for some entire function F(z)  of exponential type tr <- ~', then [F(")(t)] <= 

Ig"'(t)l on R, n = 1 , 2 , . . . .  

We shall apply this theorem to obtain an inequality for the so-called 

generalized scalar (G-S) operators. For all necessary information about them we 

refer to [10]. One has the characterization: A E B(X)  is G-S with real spectrum 

if and only if there exists p >= 0 such that II e"A II = o (I t I ') when t ~ R, ] t ] ~ oo 

([10, 5.4.51). 

DEF~rrIONS. For every G-S operator A with real spectrum we denote by 

p = p (A)  the smallest integer with the above property and call it the degree of 

A. As II e"a II/It - i l '~'~ is bounded on R, let M = M ( A )  be the smallest constant 

in I l e ' ' l l<=MIt - i l "  ( t E R ) .  

Now we prove one of the main results. 
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THEOREM 1. Let A, B be two G-S operators with real spectra. Then for every 
x E X and n = l , 2  . . . .  one has 

(1.3) IIA °x I1-<- M(A)IIx l lK(n,p(A), r) 

where r = r(A + iB, x)+ c (A ,B)  and 

c(A, B) = lira sup ( l o g l l e ' e  -'A-''B II)/I t 1. 
t~EB,}tl~ 

The number c(A, B) is .finite and nonnegative (see [4, 5.4.4]); when A and B 
commute, c(A, B) = O. 

PROOF. Let x E X and h E X', II h II = 1. We consider the functions: 

F(z)=h(e'~Ax) and g(z)=M(A)llxll(z-i)~'"'e% z~C. 

It is clear that g is in the class P and of exponential type r. 

For t E R: IF(t)l<=lle"xll<=M~m )llxll I t - i  [P(A'= lg(t)[. Also 

lira sup (log II e"a II)/Itl = 0 
t t l ~  

and 

lira sup (log II e'Ax II)/Itl --< lira sup (log II e'Ae-'A-"s II)/Itl 

+ lira sup (logll e"A+'B~X II)/I t I 

<=c(A,B)+r(A +iB, x) 

= r .  

Let now z = I z I e~° ~ C be arbitrary. We have 

lira sup (logll e'ZAx II)/I z I----lira sup (log II e"Z~°°~°AII)/I z I 

+ lira sup (log II e-lZls~"°Ax I1)/I z t 

==-t-sin01r 
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As I F(z)[ <= Ile'ZAx II, the exponential type of F(z )  does not exceed r. Applying 
the theorem of Levin to F(z )  and g(z)  we obtain: 

IF'"'(O)t=lh(A"x)l<=lg<n'(O)l=M(A)ilxllK(n,p(A),r),  n =1,2  . . . . .  

and as h is arbitrary, the proof is completed. 

COROLLARY 1. If  A, B are commuting G-S operators with real spectra, then 

[or every x <= X and n = 1,2 . . . .  

(1.4) Ilmnxll<-_M(m)llxllK(n,p(A),r), IIB°xll<=M(n)llxllK(n,p(n),r) 

with K(n, p, r) as in Theorem 1 and r = r(A + iB, x). 

PROOF. We have r(B - iA, x) = r (A + iB, x) according to (1.1). 

COROLLARY 2. Let A, B be two commuting G-S operators with real spectra o[ 

degrees p, q respectively and let T = A + lB. If  r(T, x) = 0 for some x E X, then 

AP+'x = n q + l x  = TP+q+lx = 0 .  

PROOF. When r = 0, K(p + 1, p, O) = K(q + 1, q, 0) = 0 and (1.4) implies 

AP+lx = Bq+tx = O. 

For every z E C: 
q 

eZrx=eZAe'ZB=eZ~(k~,o(iZ)kBkx/k!)=(k=~(iz)~Bk/k!)eZAx 

Therefore e zrx is a X-valued polynomial in z of degree not exceeding p + q. 

This implies T~+q+~x = O. 

COROLLARY 3 ([10, 4.3.5]). I[ O is a generalized scalar quasinilpotent operator, 

then O is nilpotent. 

Note that every G-S operator T ~ B (x )  has a decomposition T = A + iB with 
A, B commuting G-S operators with real spectra ([10, 4.6.1]). Conversely, any 

such decomposition determines a G-S operator (see [10, 4.3.4]). 

Let T~, T2 be two G-S operators. Define the operator C(Tt, T2) on B ( X )  as 

follows: C(T1, T2)(S) = TIS - ST2 (S E B(X)) .  One of the important results in 
[10] says that if ][C"(T~,T2)(S)HI/n--->O (n---~oo)for some S E B ( X ) ,  then 
C ~ (T~, T2)(S)= 0 for some integer k (Theorem 4.4.5). We can now specify this 

integer. Let TI = A + iB, T2 = C + iD with A, B, C, D all G-S operators with 
real spectra and A B  = BA, CD = DC. We have C(T~, T2) = 
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C(A, C) + iC(B, D) and C(A, C), C(B, D) commute.  It is easy to see that 

e"C~A'c~(s) = e"ASe -''c (t E R, S ~ B(X))  

and hence II e'~'~'C'll----II e ''A II II e II. Therefore C(A, C) is  a G-S operator with 
real spectrum and p (C(A , C) )<-p (A )+p (C) .  Similarly p(C(B,D))<- < _ 
p (B)+ p(D). If now lIE"iT,, Te)(S)II"" ~ 0  (n ~ )  for some S E B(X) ,  then 
Corollary 2 implies 

C"+~(A, C)(S) = Cq÷~(B, D)(S)  = Ck(T~, T2)(S) = 0  

where p = p ( A ) + p ( C ) ,  q = p ( B ) + p ( D ) ,  k = p + q + l .  
In one particular case the inequality (1.3) has a very simple form - -  when A, B 

are Hermitian equivalent operators and n = 1. 

DEFINmONS. A G-S operator A with real spectrum for which p ( A ) =  0 is 

called Hermitian equivalent, and if in addition M ( A )  = 1, i.e. II e"A II = 1 it ~ R),  

A is called Hermitian ([5]). T ~ B ( X )  is called normal (normal equivalent), if 

T = A + iB with A, B commuting Hermitian (Hermitian equivalent) operators 
on X. 

COROLLARY 4. If  T = A + iB is normal equivalent, then for all x E X 

(1.5) IlAxll<=M(A)llxllr(T,x), IIBxll<=Min)llxllr(T,x). 

As r(T,x)<=r(T), we obtain l lAII<-_M(A)r(A+iB). When B = 0  and 
M ( A )  = 1, this is the Sinclair lemma. 

COROLLARY 5 (Albrecht [1]). I[ T = A + iB is normal equivalent and 
IIZ"xll"'--,0 (n---'~) for some x E X ,  then Ax  = Bx =0 .  

COROLLARY 6. Let T be a bounded linear operator on the Hilbert space H with 
polar decomposition T = U ITI. Then for every x E H 

(1.6) tl Zx II <= [t x 1] r(I T I, x ). 

2. Inequalities tor unbounded skew-Hermitian and dissipative operators 

Let A be a linear operator with domain D ( A ) C  X and let 

D®(A)={x C D ( A ) :  Anx E D ( A )  for n = 1,2 . . . .  }. 

DEFINITIONS. The operator A is said to be dissipative, if 

i2.1) Iltx-Axll>-_tllxll ( t E R ÷ , x E D ( A ) )  
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and skew-Hermitian, if A and - A  are dissipative. (When A E B(X), A is 
skew-Hermitian if and only if iA is Hermitian - -  see [5].) 

An element x E D ~ ( A )  is called analytic for A if the function 
X:=oZ"]lA"xll/n! is holomorphic in some disk {Izl<tx}, tx>0. The set of 

analytic elements for A is denoted by a(A).  
Also, x E D=(A) is called a geometric element for A, if 

r(A, x) = lim sup IIA"x I1"" < ~ (2.2) 

in which case the function 

(2.3) F(A, z)x = ~ z"A"x /n  ! (z E C) 
n = 0  

is entire and of exponential type r(A, x). The set of geometric elements for A is 

denoted by b(A).  
When x, y E b(A),  the properties (1.1) and (1.2) hold, hence the sets b(A)  and 

K ( A , a ) = { x  E b(A): r(A,x)<=a} for every a > 0  are linear subspaces of 

D®(A), invariant for A. 
We are interested in the case when F(A, t)x is bounded on R or on R +. 

Sufficient conditions are given by the following two lemmas. 

LEMMA 1. If A is closed and skew-Hermitian, then for every x E a (A ) the 
function F(A, t)x, t E ( - t x ,  tx) can be extended to R as a C ~ function (denoted 
again by F(A, t)x) such that for t E R, IIF(A, t)x II = IIx II and 

(2.4) (d"/dt" )F(A, t)x = F(A, t )A "x, n = 1, 2 . . . . .  

Moreover, a (A  ) is invariant for A"  and F(A,  t). 

The proof is contained in [6, Theorem 2]. 

LEMMA 2. Let A be a closed dissipative operator and x E b(A).  Then 

[] F(A, t)x II <= ]l x II for t E R +, b (A ) is invariant for A"  and F(A,  t) (n = 1, 2 , . . . ,  

t E R +) and (2.4) holds. 

PROOF. Consider the operator-valued functions 

G ( z ) = ~ A " / z  "+', G , ( z ) =  £ a " / z  m+'. 
n ~ 0  r a  = 0  

When I z l >  r(A,x) ,  G(z)x  is holomorphic and for every k = 1,2 . . . .  

G, (z)Akx = A~G, (z)x = Zk(G,+k (Z)X -- Gk-~(z)x). 
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As A k is closed ([12, 7.9.7]) and G, (z)y ---) G(z )y  (y ~ b(A),  n --->~) we obtain 

G(z)x  E D ( A  ~) and zkG~_,(z)x ~ (zkI - A~)G(z )x  = G ( z ) ( z ~ I -  A~)x, so 

that G(z)x  E D~(A) and x = (zI - A ) G ( z ) x  = G(z ) ( z I  - A )x  (k = 1). 

According to (2.1), we have for every real t > r(A, x): 

(2.5) II tG(t)x II =< II x II 

and as IIA"G(t)xlI"" =llGft)m"xll""<-_t-""llm"xll"" ( n = l , 2  . . . .  ) we find 
r(A, G(t)x)<= r(A, x). 

Let now a > 0  be arbitrary and t > a, x E K(A,  a). 
First, it is clear that G(t) maps K(A,  a) in itself. Also, 

G(t)x - G(s)x = (s - t )G(t)G(s)x when s > a, 

hence 

(d"/dt")G(t)x  =(-1)"n!G"+~(t)x, n = 1 , 2  . . . . .  

As F(A, z)x is of exponential type r(A, x)<= a, for every e > 0  we have the 

estimate lIE(A, s)x II--- M ( ~ ) e  '°+°>~'~, s ~ R. Hence the integral f~ e-"F(A, s)xds 
converges and integration by parts shows that it equals G(t)x. 

We can apply now the Post-Widder inversion formula [23, Ch. 7] (which holds 

for X-valued functions via Hahn-Banach's  theorem): 

F(A, t )x = !ira ( -  1)" (n !)-l(n/t)"+~ Gt")(n/ t )x 

= lira (nlt)"+'G"*'(nlt)x, 

a,,,~ in view of (2.5), II F(A, t)~ IT <--II~ II (t > a > o). As, is arbitrary, this hoZ,~ fo~ 
every t E R +. It easily follows that F(A, t) keeps K(A,  a) invariant when a > 0, 

t E R +, therefore F(A, t) keeps invariant b(A)  and (2.4) holds. 

REMARK. When A is densely defined, instead of x E b(A)  we can assume 

only that x is an entire element for A, i.e. IIA"x II ' /" = o(n) (n---,~), according to 

[18, Theorem 3.2], [3] and [12, 5.9.51.  

We shall now apply to F(A, t)x the Landau-Kolmogorov inequalities for 

functions on the real line R and on the half-line R+: 

(2.6) II f 'k'll-_ c..~ Ilfll '-k'" II f'",ll k'", 

(2.7) Ilf'~'ll <_- c~+kllfll'-~'" IIC'II k'" , n = 2 , 3  . . . . .  l<=k<n. 
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Here (2.6), (2.7) hold for any [ E C~(R) (resp. [ E C~(R+)) bounded there 
together with its derivatives and I[" II is the "sup" norm. The best constants C~.k in 

(2.6) were found by Kolmogorov in explicit form; in particular, C~1 ~ 1 (n ~ ~) 
- -  see [16], [19]. The best constants C~+.k in (2.7) are not known in explicit form, 
but can be computed with any prescribed error ([20]). 

Operator versions of these inequalities follow easily. 

THEOREM 2. Let A be a closed operator on X. Then 

(2.8) I[ A kx II =< c,~k II x II '-~'- II A ~x II ~'" 

when A is skew-Hermitian and x is analytic [or it; also 

(2.9) Ila~xll<-_CLkllxll'-~'~llAnxll ~'~, n = 2 , 3  . . . .  , l<=k <n, 

when A is dissipative and x is geometric [or A. 

PROOF. For x given, we apply (2.6) and (2.7) to [(t) = h(F(A, t)x), where 

h ~ x ' ,  IIh 11 = 1 is arbitrary and t E R (resp. t E R+). As 

If'~'(t)l=[h(F(A,t)Akx)l<=llAkxll, ['k)(O)=h(Akx), k = l , 2  . . . . .  

(see Lemmas 1 and 2) the inequalities (2.8), (2.9) follow. 

COROLLARY 7. When A is closed, skew-Hermitian and x E a(A):  

(2.10) IlAx II IIx II liminf IIAnx II ''n. 

PROOF. Put k = 1 and n ~ oo in (2.8). Cf. [19, Remark 6]. 

COROLLARY 8 (A boundedness criterion). Let A be a closed skew-Hermitian 
operator. Then A is bounded if and only if r (A, x) <-_ C on a subset of b (A  ) which 
is dense in X. 

PROOF. When A E B ( X ) ,  clearly r ( A , x ) < - r ( A ) f o r  every x ~ X .  Con- 

versely, the assumption implies that the subspace K(A,  C) = 

{x E b(A): r(A, x) -< C} is dense in X. As IIAx II---- CIIx II when x E K(A,  C) and 
A is closed, D ( A ) =  X and A E B(X).  

REMARK. Operator versions of (2.6), (2.7) have been obtained also by 
Ditzian, Certain-Kurtz and Chernoff - -  see [8], but only for generators of Co 
(semi)groups. Here A need not even be densely defined, but we have to put 

restrictions on the element x. 
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We know that r(A)<-II A II for every A E B ( X ) .  In connection with this and 

(1.5), (2.10), the question arises whether an inequality 

(2.11) r(a,x)llxll<= cIImxll (C a constant) 

holds at least for bounded Hermitian operators. This, however, is not true, even 
for Hermitian projections on a Hilbert space. 

Let H be the Hilbert space R 2 with norm II(u, v)ll = (u2+ v2) ''2 EXAMPLE. 

and let 

x = (u, (1 - u2)"2), 0 < u < 1, 

We have ]Ix II = 1, r(P, x) = 1, IlPx l] = u. If (2.11) holds, letting u ---~0 we come to 
a contradiction. 

Another question: Does an inequality of the form (2.10) hold for dissipative 

operators too? The answer is "no" .  Lumer and Phillips in [18, Theorem 2.2] 

have given an example of a nonzero bounded dissipative quasinilpotent operator 

acting on a Hilbert space. For such an operator  (2.10) is impossible. However,  we 

have the following. 

PROPOSITION 1. Let A be closed, dissipative, and x E b (A  ). Then 

(2.12) 

and 

IlAx II = (el2)llx II liminf (n [IA"x I1"") 

(2.13) 

PROOF. 

IIAx II = (2/e)llx II lim sup (n IIA"x I1""). 
n ~  

The following estimates hold: 

m . ~ p +  < e  e 2 ( 1 - ° ( 1 ) ) n < " ' d = 2  n' n = 2 , 3  . . . .  

(see [22]), which in view of (2.9) imply (2.12). 

When 

~/= lim sup (n [I A"x [I TM) < 00, 

we consider the entire function f ( z )  = h (F(A,  z 2)x), h E X ' ,  II h l[ = 1, which is of 
exponential type 
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r = lim sup I f~k'(0)I ''k --<_ lim sup (((2n)!/n !)11A "x = 2(y/e)  l'z 

(by Stirling's formula ((2n)!/n !)~/2~ ~ 2(n/e)lZ2 when n---~ oo). 

As I/(t)l  <-- Ux II for t ~ R (Lemma 2), we can apply Bernstein's inequality i0,1) 
twice to obtain 

If"(0)] = 21 h(Ax)] <- ~211x I1---- (4/e)3,llx I1 

and (2.13) follows. 

REMARK. In view of the above it is reasonable to conjecture that 

l iminf in l lm°x l l l ' ° )= l imsupin l lm"x l l  ~'o) and C:,/n---~2/e (n---~). 

3. A class of operators 

In this section we prove some propositions about operators T E B ( X )  
satisfying for every x E X the inequality 

(3.1) II Tx II---- c II x II r(Z, x) 

with some constant C = C(T). We call such operators subjacent. 
According to (1.5), every normal equivalent operator has this property. Furuta 

and Istratescu introduced, some twenty years ago, the class of paranormal (or 

class (N)) operators, defined by 

(3.2) II Zx I[ = <-__ II x tl II Z =x II ix ~ X) 

(see [13], p. 605 in the same journal and [14]). For them induction implies 

II Tx II----II x II '-"~ II Z"x I1"", n -- 2, 3 , . . . ,  

hence every paranormal operator satisfies i3.1) with C = 1. It is easy to see that 

every quasihyponormal operator T (i.e. II T* Zx II <--II Z~x 11, x ~ X),  hence every 

hyponormal operator ill Z*x  II =< II Zx II), is paranormal. 
In what follows we assume that T E B(X)  is a subjacent operator. 

PROPOSmON 2. Let TkS = SQ [or some positive integer k and S, O ~ B(X) ,  O 
quasinilpotent. Then TS = O. 

PROOF. We have Tk"S = S O  n, Ilzk°sxll ''~ <-_llsll""llO~xll ''" (n = 1 , 2  . . . . .  
x E X). Hence r (T  k, Sx)= 0. A result of Apostol [2] says that 

{y E X :  r(Zk, y ) = 0 }  = {y E X :  r (T ,y)  =0} (k = 2 , 3  . . . .  ) 

and so r(T, Sx) = 0. Now (3.1) implies TSx = O. 
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PROPOSITION 3. I f  Tkx = Qx for some x E X, integer k, and quasinilpotent 

operator Q commuting with T, then Tx = O. 

PROOF. Tk"x = Q"x  (n = 2 , 3  . . . .  ). H e n c e  r(Tk, x ) = O  and r ( T , x ) = 0 .  

A p p l i e d  to n o r m a l  equ iva len t  ope ra to r s ,  this resul t  t oge the r  wi th  Coro l l a ry  4 

in Sec t ion  I p rov ides  a fu r the r  gene ra l i za t i on  of F u g l e d e - P u t n a m ' s  c o m m u t a t i o n  

t h e o r e m  (cf. [11]). 

PROPOSITION4. I f  O < r ( T , x ) < I I T I I / C  for some x E X ,  then K =  

K ( T ,  r(T, x))  is a non-trivial hyperinvariant subspace for T. 

(C  = C ( T )  - -  see (3.1); recal l  tha t  K(T ,  a )  = {y ~ X :  r(T, y)=< a}.) 

PROOF. K #  {0}, because  0 # x E K. F o r  every  y E K we have  

tl Zy tl C Ii Y It r(Z, O(Z, x)tl Y II. 

Suppose now that K is dense in X. Then [[ T]] < Cr(T, x) < II •11- a contradic- 
tion. 

Finally, let S E B(X),  ST = TS. For every y E X and n = 1, 2 , . . .  we have 
II T"Sy II"" <= II s II 1/" II T"y II"", so that r(T, Sy) =< r(T, y). It follows that S maps K 
in K. 
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