SINCLAIR TYPE INEQUALITIES FOR THE LOCAL SPECTRAL RADIUS AND RELATED TOPICS

BY

KHRISTO N. BOYADZHIEV

Institute of Mathematics, Bulgarian Academy of Science, Sofia, 1090, P.O. Box 373, Bulgaria

ABSTRACT

We generalize the well-known Sinclair lemma for Hermitian elements, proving pointwise versions for generalized scalar operators and unbounded skew-Hermitian operators.

0. Introduction

Using Bernstein's inequality (see [4, Theorem 11.1.2]):

$$
\sup_{t \in R} |F'(t)| \leq \tau \sup_{t \in R} |F(t)|
$$

for entire functions $F(z)$ of exponential type τ bounded on R, Browder [7], Sinclair [21] and Katznelson [15] proved the important Sinclair lemma: $||A|| =$ $r(A)$ for Hermitian operators A on a Banach space X $(r(\cdot)$ -- the spectral radius; see also [5, §26]).

We develop this idea further, to what seems to be its natural extent, and prove here stronger results for a wider class of operators.

In Theorem 1, we apply an extension of Bernstein's inequality to obtain a general pointwise inequality for operators A such that

$$
\|e^{itA}\| = O(|t|^p) \quad \text{for some } p \ge 0 \quad (t \in R, |t| \to \infty).
$$

In particular:

$$
||Ax|| \leq ||x||r(A + iB, x)
$$

Received March 30, 1986 and in revised form July 22, 1986

(0.3)
$$
r(T, x) = \limsup_{n \to \infty} ||T^n x||^{1/n}
$$

is the local spectral radius of T at x .

In Section 2 we prove the pointwise inequalities

(0.4)
$$
\|Ax\| \le \|x\| \liminf_{n \to \infty} \|A^x x\|^{1/n}, \qquad x \text{ analytic for } A,
$$

for any unbounded closed skew-Hermitian operator A and

$$
(0.5) \t\t\t ||Ax|| \leq \frac{e}{2} ||x|| \liminf_{n \to \infty} (n ||A''x||^{1/n}), \t x geometric for A
$$

for any closed dissipative operator A. These inequalities follow from the operator versions (Theorem 2) of Landau–Kolmogorov's inequalities for C^* functions on \bf{R} and \bf{R}^+ .

At the end of the paper we show how $r(T, x)$ defined in (0.3) can be used to construct hyperinvariant subspaces for a class of operators.

1. The local spectral radius and inequalities for generafized scalar operators

Throughout X denotes a complex Banach space and $B(X)$ the space of bounded linear operators on X. The quantity (0.3) defined for every $x \in X$ and $T \in B(X)$ is finite, as

$$
||T^n x||^{1/n} \leq ||T^n||^{1/n} ||x||^{1/n} \qquad (n = 1, 2, ...)
$$

and hence $r(T, x) \le r(T) < \infty$. For every $\alpha, \beta \in \mathbb{C}$, $x, y \in X$ it easily follows that

(1.1) *r(~Z,/3x)* = [a I r(Z, x)

and

(1.2)
$$
r(T, x + y) \leq \max\{r(T, x), r(T, y)\}.
$$

An operator $T \in B(X)$ is said to have the single-valued extension property (SVEP) if whenever $(zI-T)g(z)=0$ holds for some X-valued holomorphic function g in some open set $U \subseteq C$, then $g = 0$ in U. If T has the SVEP, for every $x \in X$ the holomorphic function $(zI - T)^{-1}x$ has a single-valued maximal extension from the resolvent set of T to the open local resolvent set $\rho_T(x)$. Its complement $\sigma_T(x) = C\sqrt{\rho_T(x)}$ is called the local spectrum of T at x. One easily sees that

$$
r(T, x) = \sup\{|z| : z \in \sigma_T(x)\}\
$$

for every $x \in X$ when T has the SVEP (as $r(T, x)$ is the radius of convergence of $g_x(z) = \sum_{n=0}^{\infty} T^n x/z^{n+1}$ and $(zI-T)g_x(z) = x$ when $|z| > r(T, x)$).

Note that the generalized scalar operators considered later in this section and the hyponormal operators mentioned in Section 3 all have the SVEP ([10, p. 62], $[9, p. 13]$.

Let $g(z)$ be an entire function. If one of the quantities

$$
\limsup_{|z|\to\infty} (\log|g(z)|)/|z|; \quad \limsup_{n\to\infty} |g^{(n)}(0)|^{1/n}
$$

is finite, the other is finite too and they coincide. This number, say τ , is called the exponential type of g — see [4, Ch. 2], [17, Ch. 1]; τ is characterized also by the property: for every $\varepsilon > 0$ there exists $M(\varepsilon) > 0$ such that $|g(z)| \leq M(\varepsilon) e^{(t+\varepsilon)|z|}$ when $z \in \mathbb{C}$. Note that $\tau \ge 0$. The same is true for entire functions $g: \mathbb{C} \rightarrow X$, with $\lVert \cdot \rVert$ replaced by $\lVert \cdot \rVert$.

DEFINITION. An entire function $g(z)$ belongs to the class P, if g is of finite exponential type, has no zeros in $\{Im(z) < 0\}$ and

$$
\limsup (\log |g(it)|)/t \leq \limsup (\log |g(-it)|)/t.
$$

The next result was proved by Levin [17, IX.11], [4, 11.7.2].

THEOREM. Let g be in the class P and of exponential type τ . If $|F(t)| \leq |g(t)|$ *on R for some entire function F(z) of exponential type* $\sigma \leq \tau$ *, then* $|F^{(n)}(t)| \leq$ $|\mathbf{g}^{(n)}(t)|$ on R, $n = 1, 2, ...$

We shall apply this theorem to obtain an inequality for the so-called generalized scalar (G-S) operators. For all necessary information about them we refer to [10]. One has the characterization: $A \in B(X)$ is G-S with real spectrum if and only if there exists $p \ge 0$ such that $||e^{iA}|| = O(|t|^p)$ when $t \in R$, $|t| \to \infty$ **([10, 5.4.51).**

DEFINITIONS. For every G-S operator A with real spectrum we denote by $p = p(A)$ the smallest integer with the above property and call it the degree of **A.** As $||e^{itA}||/||t-i|^{p(A)}$ is bounded on R, let $M = M(A)$ be the smallest constant in $\|e^{itA}\| \leq M |t-i|^p$ ($t \in R$).

Now we prove one of the main results.

THEOREM 1. *Let A, B be two G-S operators with real spectra. Then for every* $x \in X$ and $n = 1, 2, \ldots$ one has

(1.3)
$$
||A''x|| \leq M(A)||x||K(n, p(A), r)
$$

where $r = r(A + iB, x) + c(A, B)$ *and*

$$
K(n, p, r) = \sum_{k=0}^{n} {n \choose k} p(p-1) \cdots (p-n+k+1) r^{k},
$$

$$
c(A, B) = \limsup_{t \in R, |t| \to \infty} (\log ||e^{tA}e^{-tA - itB}||)/|t|.
$$

The number $c(A, B)$ *is finite and nonnegative* (see [4, 5.4.4]); when A and B *commute,* $c(A, B) = 0$ *.*

PROOF. Let $x \in X$ and $h \in X'$, $\|h\| = 1$. We consider the functions:

$$
F(z) = h(e^{izA}x)
$$
 and $g(z) = M(A) ||x|| (z - i)^{p(A)} e^{izt}$, $z \in \mathbb{C}$.

It is clear that g is in the class P and of exponential type r .

For $t \in R$: $|F(t)| \leq ||e^{iA}x|| \leq M(A)||x|| |t-i|^{p(A)} = |g(t)|$. Also

$$
\limsup_{|t|\to\infty} (\log ||e^{itA}||)/|t|=0
$$

and

$$
\limsup_{|t|\to\infty} (\log ||e^{tA}x||)/|t| \le \limsup_{|t|\to\infty} (\log ||e^{tA}e^{-tA-iB}||)/|t|
$$

+
$$
\limsup_{|t|\to\infty} (\log ||e^{t(A+iB)}x||)/|t|
$$

$$
\le c(A, B) + r(A + iB, x)
$$

= r.

Let now $z = |z| e^{i\theta} \in \mathbb{C}$ be arbitrary. We have

$$
\limsup_{|z|\to\infty} (\log ||e^{izA}x\,||)/|z|| \leq \limsup_{|z|\to\infty} (\log ||e^{i|z|\cos \theta A}||)/|z|
$$
\n
$$
+ \limsup_{|z|\to\infty} (\log ||e^{-|z|\sin \theta A}x\,||)/|z|
$$
\n
$$
\leq |-\sin \theta |r
$$
\n
$$
\leq r.
$$

As $|F(z)| \leq ||e^{izA}x||$, the exponential type of $F(z)$ does not exceed r. Applying the theorem of Levin to $F(z)$ and $g(z)$ we obtain:

$$
|F^{(n)}(0)| = |h(A^n x)| \leq |g^{(n)}(0)| = M(A)||x||K(n, p(A), r), \qquad n = 1, 2, ...
$$

and as h is arbitrary, the proof is completed.

COROLLARY 1. *If A, B are commuting G-S operators with real spectra, then for every* $x \leq X$ *and n = 1,2,...*

$$
(1.4) \qquad \|A''x\| \leq M(A)\|x\|K(n,p(A),r),\|B''x\| \leq M(B)\|x\|K(n,p(B),r)
$$

with $K(n, p, r)$ *as in Theorem* 1 *and* $r = r(A + iB, x)$.

PROOF. We have $r(B - iA, x) = r(A + iB, x)$ according to (1.1).

COROLLARY 2. Let A, B be two commuting G-S operators with real spectra of *degrees p, q respectively and let* $T = A + iB$. If $r(T, x) = 0$ *for some* $x \in X$, *then* $A^{p+1}x = B^{q+1}x = T^{p+q+1}x = 0.$

PROOF. When $r = 0$, $K(p+1, p, 0) = K(q+1, q, 0) = 0$ and (1.4) implies $A^{p+1}x = B^{q+1}x = 0.$

For every $z \in \mathbb{C}$:

$$
e^{zT}x = e^{zA}e^{izB} = e^{zA}\left(\sum_{k=0}^{q} (iz)^{k}B^{k}x/k!\right) = \left(\sum_{k=0}^{q} (iz)^{k}B^{k}/k!\right)e^{zA}x
$$

$$
= \left(\sum_{k=0}^{q} (iz)^{k}B^{k}/k!\right)\left(\sum_{m=0}^{p} z^{m}A^{m}x/m!\right).
$$

Therefore $e^{iT}x$ is a X-valued polynomial in z of degree not exceeding $p + q$. This implies $T^{p+q+1}x = 0$.

COROLLARY 3 ([10, 4.3.5]). *If Q is a generalized scalar quasinilpotent operator, then O is nilpotent.*

Note that every G-S operator $T \in B(x)$ has a decomposition $T = A + iB$ with A, B commuting G-S operators with real spectra ([10, 4.6.1]). Conversely, any such decomposition determines a G-S operator (see [10, 4.3.4]).

Let T_1 , T_2 be two G-S operators. Define the operator $C(T_1, T_2)$ on $B(X)$ as follows: $C(T_1, T_2)(S) = T_1S - ST_2$ ($S \in B(X)$). One of the important results in [10] says that if $||C^n(T_1, T_2)(S)||^{1/n} \rightarrow 0$ ($n \rightarrow \infty$) for some $S \in B(X)$, then $C^{k}(T_1, T_2)(S) = 0$ for some integer k (Theorem 4.4.5). We can now specify this integer. Let $T_1 = A + iB$, $T_2 = C + iD$ with A, B, C, D all G-S operators with real spectra and $AB = BA$, $CD = DC$. We have $C(T_1, T_2) =$

 $C(A, C) + iC(B, D)$ and $C(A, C)$, $C(B, D)$ commute. It is easy to see that

$$
e^{i t C(A,C)}(S) = e^{i t A} S e^{-i t C} \qquad (t \in R, S \in B(X))
$$

and hence $||e^{i(C(A,C)}|| \leq ||e^{iA}|| ||e^{-iC}||$. Therefore $C(A, C)$ is a G-S operator with real spectrum and $p(C(A, C)) \leq p(A) + p(C)$. Similarly $p(C(B, D)) \leq$ $p(B) + p(D)$. If now $||C^n(T_1, T_2)(S)||^{1/n} \rightarrow 0$ $(n \rightarrow \infty)$ for some $S \in B(X)$, then Corollary 2 implies

$$
C^{p+1}(A, C)(S) = C^{q+1}(B, D)(S) = C^{k}(T_1, T_2)(S) = 0
$$

where $p = p(A) + p(C)$, $q = p(B) + p(D)$, $k = p + q + 1$.

In one particular case the inequality (1.3) has a very simple form — when A, B are Hermitian equivalent operators and $n = 1$.

DEFINITIONS. A G-S operator A with real spectrum for which $p(A) = 0$ is called Hermitian equivalent, and if in addition $M(A) = 1$, i.e. $||e^{iA}|| = 1$ ($t \in R$), A is called Hermitian ([5]). $T \in B(X)$ is called normal (normal equivalent), if $T = A + iB$ with A, B commuting Hermitian (Hermitian equivalent) operators on X.

COROLLARY 4. If $T = A + iB$ is normal equivalent, then for all $x \in X$

$$
(1.5) \t\t\t ||Ax|| \leq M(A)||x||r(T,x), ||Bx|| \leq M(B)||x||r(T,x).
$$

As $r(T, x) \le r(T)$, we obtain $||A|| \le M(A)r(A+iB)$. When $B=0$ and $M(A) = 1$, this is the Sinclair lemma.

COROLLARY 5 (Albrecht [1]). *If* $T = A + iB$ is normal equivalent and $||T^n x||^{1/n} \rightarrow 0$ ($n \rightarrow \infty$) *for some* $x \in X$, *then* $Ax = Bx = 0$.

COROLLARY 6. *Let T be a bounded linear operator on the Hilbert space H with polar decomposition* $T = U |T|$ *. Then for every* $x \in H$

(1.6) *tl Zx II <= [t x 1] r(I T I, x).*

2. Inequalities tor unbounded skew-Hermitian and dissipative operators

Let A be a linear operator with domain $D(A) \subset X$ and let

$$
D^*(A) = \{x \subseteq D(A): A^*x \in D(A) \text{ for } n = 1, 2, \ldots\}.
$$

DEFINITIONS. The operator A is said to be dissipative, if

(2.1)
$$
\|tx - Ax\| \ge t \|x\| \quad (t \in R^+, x \in D(A))
$$

and skew-Hermitian, if A and $-A$ are dissipative. (When $A \in B(X)$, A is skew-Hermitian if and only if iA is Hermitian $-$ see [5].)

An element $x \in D^*(A)$ is called analytic for A if the function $\sum_{n=0}^{\infty} z^n ||A^n x||/n!$ is holomorphic in some disk $\{|z| < t_x\}$, $t_x > 0$. The set of analytic elements for A is denoted by $a(A)$.

Also, $x \in D^*(A)$ is called a geometric element for A, if

(2.2)
$$
r(A, x) = \limsup_{n \to \infty} ||A^n x||^{1/n} < \infty
$$

in which case the function

(2.3)
$$
F(A, z)x = \sum_{n=0}^{\infty} z^{n} A^{n} x/n! \qquad (z \in \mathbb{C})
$$

is entire and of exponential type $r(A, x)$. The set of geometric elements for A is denoted by *b(A).*

When $x, y \in b(A)$, the properties (1.1) and (1.2) hold, hence the sets $b(A)$ and $K(A, a) = {x \in b(A): r(A, x) \le a}$ for every $a > 0$ are linear subspaces of $D^{\infty}(A)$, invariant for A.

We are interested in the case when $F(A, t)x$ is bounded on R or on R^+ . Sufficient conditions are given by the following two lemmas.

LEMMA 1. If A is closed and skew-Hermitian, then for every $x \in a(A)$ the *function* $F(A, t)x$, $t \in (-t_x, t_x)$ *can be extended to R as a* $C[*]$ *function* (*denoted again by* $F(A, t)x$ *such that for* $t \in R$, $\|F(A, t)x\| = \|x\|$ *and*

(2.4)
$$
(d^n/dt^n)F(A,t)x = F(A,t)A^n x, \qquad n = 1,2,...
$$

Moreover, $a(A)$ *is invariant for Aⁿ and* $F(A, t)$ *.*

The proof is contained in [6, Theorem 2].

LEMMA 2. Let A be a closed dissipative operator and $x \in b(A)$. Then $||F(A, t)x|| \leq ||x||$ for $t \in R^+$, $b(A)$ is invariant for A^n and $F(A, t)$ $(n = 1, 2, \ldots, t]$ $t \in R^+$) and (2.4) *holds.*

PROOF. Consider the operator-valued functions

$$
G(z) = \sum_{n=0}^{\infty} A^n/z^{n+1}, \quad G_n(z) = \sum_{m=0}^{n} A^m/z^{m+1}.
$$

When $|z| > r(A, x)$, $G(z)x$ is holomorphic and for every $k = 1, 2, ...$

$$
G_n(z)A^k x = A^k G_n(z)x = z^k (G_{n+k}(z)x - G_{k-1}(z)x).
$$

As A^k is closed ([12, 7.9.7]) and $G_n(z)y \to G(z)y$ ($y \in b(A)$, $n \to \infty$) we obtain $G(z)x \in D(A^k)$ and $z^kG_{k-1}(z)x = (z^kI - A^k)G(z)x = G(z)(z^kI - A^k)x$, so that $G(z)x \in D^{*}(A)$ and $x = (zI - A)G(z)x = G(z)(zI - A)x$ ($k = 1$).

According to (2.1), we have for every real $t > r(A, x)$:

(2.5) II *tG(t)x* II =< II x II

and as $||A^nG(t)x||^{1/n} = ||G(t)A^r x||^{1/n} \leq t^{-1/n}||A^n x||^{1/n}$ $(n = 1, 2, ...)$ we find $r(A, G(t)x) \le r(A, x)$.

Let now $a > 0$ be arbitrary and $t > a$, $x \in K(A, a)$. First, it is clear that $G(t)$ maps $K(A, a)$ in itself. Also,

$$
G(t)x - G(s)x = (s-t)G(t)G(s)x \quad \text{when } s > a,
$$

hence

$$
(d^n/dt^n)G(t)x = (-1)^n n! G^{n+1}(t)x, \qquad n = 1, 2, \ldots
$$

As $F(A, z)x$ is of exponential type $r(A, x) \le a$, for every $\varepsilon > 0$ we have the estimate $\|F(A, s)x\| \leq M(\varepsilon) e^{(a+\varepsilon)|s|}$, $s \in R$. Hence the integral $\int_0^{\infty} e^{-ts} F(A, s)x ds$ converges and integration by parts shows that it equals $G(t)x$.

We can apply now the Post-Widder inversion formula [23, Ch. 7] (which holds for X-valued functions via Hahn-Banach's theorem):

$$
F(A, t)x = \lim_{n \to \infty} (-1)^n (n!)^{-1} (n/t)^{n+1} G^{(n)}(n/t)x
$$

=
$$
\lim_{n \to \infty} (n/t)^{n+1} G^{n+1}(n/t)x,
$$

and in view of (2.5), $||F(A, t)x|| \le ||x|| (t > a > 0)$. As a is arbitrary, this holds for every $t \in \mathbb{R}^+$. It easily follows that $F(A, t)$ keeps $K(A, a)$ invariant when $a > 0$, $t \in R^+$, therefore $F(A, t)$ keeps invariant $b(A)$ and (2.4) holds.

REMARK. When A is densely defined, instead of $x \in b(A)$ we can assume only that x is an entire element for A, i.e. $||A''x||^{1/n} = o(n)$ ($n \rightarrow \infty$), according to [18, Theorem 3.2], [3] and [12, 5.9.5].

We shall now apply to $F(A, t)x$ the Landau-Kolmogorov inequalities for functions on the real line R and on the half-line R^+ :

$$
(2.6) \t\t\t ||f^{(k)}|| \leq C_{n,k} ||f||^{1-k/n} ||f^{(n)}||^{k/n},
$$

$$
(2.7) \t||f^{(k)}|| \leq C_{n,k}^+ ||f||^{1-k/n} ||f^{(n)}||^{k/n}, \t n = 2,3,\ldots, \t 1 \leq k < n.
$$

Here (2.6), (2.7) hold for any $f \in C^*(R)$ (resp. $f \in C^*(R^+)$) bounded there together with its derivatives and $\|\cdot\|$ is the "sup" norm. The best constants C_{nk} in (2.6) were found by Kolmogorov in explicit form; in particular, $C_{n,1} \rightarrow 1$ ($n \rightarrow \infty$) -- see [16], [19]. The best constants C_{nk}^+ in (2.7) are not known in explicit form, but can be computed with any prescribed error ([20]).

Operator versions of these inequalities follow easily.

THEOREM 2. *Let A be a closed operator on X. Then*

$$
(2.8) \t\t\t $||A^k x|| \leq C_{n,k} ||x||^{1-k/n} ||A^k x||^{k/n}$
$$

when A is skew-Hermitian and x is analytic for it; also

$$
(2.9) \qquad \|A^k x\| \leq C_{n,k}^* \|x\|^{1-k/n} \|A^n x\|^{k/n}, \qquad n=2,3,\ldots, \quad 1 \leq k < n,
$$

when A is dissipative and x is geometric for A .

PROOF. For x given, we apply (2.6) and (2.7) to $f(t) = h(F(A, t)x)$, where $h \in X'$, $||h|| = 1$ is arbitrary and $t \in R$ (resp. $t \in R^+$). As

$$
|f^{(k)}(t)| = |h(F(A, t)A^k x)| \leq ||A^k x||, \quad f^{(k)}(0) = h(A^k x), \qquad k = 1, 2, \ldots,
$$

(see Lemmas 1 and 2) the inequalities (2.8), (2.9) follow.

COROLLARY 7. *When A is closed, skew-Hermitian and* $x \in a(A)$:

(2.10) *IlAx* **II IIx II liminf** *IIAnx* **II ''n.**

PROOF. Put $k = 1$ and $n \rightarrow \infty$ in (2.8). Cf. [19, Remark 6].

COROLLARY 8 (A boundedness criterion). *Let A be a closed skew-Hermitian operator. Then A is bounded if and only if* $r(A, x) \leq C$ *on a subset of b(A) which is dense in X.*

PROOF. When $A \in B(X)$, clearly $r(A, x) \le r(A)$ for every $x \in X$. Conversely, the assumption implies that the subspace $K(A, C)$ = ${x \in b(A): r(A, x) \leq C}$ is dense in X. As $||Ax|| \leq C||x||$ when $x \in K(A, C)$ and A is closed, $D(A) = X$ and $A \in B(X)$.

REMARK. Operator versions of (2.6), (2.7) have been obtained also by Ditzian, Certain-Kurtz and Chernoff — see [8], but only for generators of C_0 (semi)groups. Here A need not even be densely defined, but we have to put restrictions on the element x.

We know that $r(A) \leq ||A||$ for every $A \in B(X)$. In connection with this and (1.5), (2.10), the question arises whether an inequality

$$
(2.11) \quad r(A, x) \|x\| \leq C \|Ax\| \quad (C \text{ a constant})
$$

holds at least for bounded Hermitian operators. This, however, is not true, even for Hermitian projections on a Hilbert space.

EXAMPLE. Let H be the Hilbert space \mathbb{R}^2 with norm $\|(u, v)\| = (u^2 + v^2)^{1/2}$ and let

$$
x = (u, (1 - u^2)^{1/2}), \quad 0 < u < 1, \qquad P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.
$$

We have $||x|| = 1$, $r(P, x) = 1$, $||Px|| = u$. If (2.11) holds, letting $u \rightarrow 0$ we come to a contradiction.

Another question: Does an inequality of the form (2.10) hold for dissipative operators too? The answer is "no". Lumer and Phillips in [18, Theorem 2.2] have given an example of a nonzero bounded dissipative quasinilpotent operator acting on a Hilbert space. For such an operator (2.10) is impossible. However, we have the following.

PROPOSITION 1. Let A be closed, dissipative, and $x \in b(A)$. Then

(2.12) *IlAx* II = *(el2)llx* II liminf (n [IA"x I1"")

and

(2.13) *IIAx* **II =** *(2/e)llx* **II lim sup (n IIA"x I1"").** n~

PROOF. The following estimates hold:

$$
\frac{2}{e}(1-o(1))n \leqq C_{n,1}^+ \leqq \frac{e}{2}n, \qquad n=2,3,\ldots
$$

(see $[22]$), which in view of (2.9) imply (2.12) . When

$$
\gamma=\limsup_{n\to\infty}\left(n\left\|A^nx\right\|^{1/n}\right)<\infty,
$$

we consider the entire function $f(z) = h(F(A, z^2)x)$, $h \in X'$, $||h|| = 1$, which is of exponential type

$$
\tau = \limsup_{k \to \infty} |f^{(k)}(0)|^{1/k} \leq \limsup_{n \to \infty} ((2n)!/n!) ||A^n x||)^{1/2n} = 2(\gamma/e)^{1/2}
$$

(by Stirling's formula $((2n)!/n!)^{1/2n} \sim 2(n/e)^{1/2}$ when $n \to \infty$).

As $|f(t)| \leq ||x||$ for $t \in R$ (Lemma 2), we can apply Bernstein's inequality (0,1) twice to obtain

$$
|f''(0)| = 2|h(Ax)| \leq \tau^2 ||x|| \leq (4/e)\gamma ||x||
$$

and (2.13) follows.

REMARK. In view of the above it is reasonable to conjecture that

 $\liminf_{n \to \infty} (n || A^n x ||^{1/n}) = \limsup_{n \to \infty} (n || A^n x ||^{1/n})$ and $C^+_{n,l}/n \to 2/e$ $(n \to \infty)$.

3. A class of operators

In this section we prove some propositions about operators $T \in B(X)$ satisfying for every $x \in X$ the inequality

(3.1) II *Tx* II---- c II x II *r(Z, x)*

with some constant $C = C(T)$. We call such operators subjacent.

According to (1.5), every normal equivalent operator has this property. Furuta and Istratescu introduced, some twenty years ago, the class of paranormal (or class (N)) operators, defined by

$$
(3.2) \t\t\t\t ||Tx||2 \le ||x|| ||T2x|| \t (x \in X)
$$

(see [13], p. 605 in the same journal and [14]). For them induction implies

$$
||Tx|| \leq ||x||^{1-1/n} ||T^nx||^{1/n}, \qquad n=2,3,\ldots,
$$

hence every paranormal operator satisfies (3.1) with $C = 1$. It is easy to see that every quasihyponormal operator T (i.e. $||T^*Tx|| \le ||T^2x||$, $x \in X$), hence every hyponormal operator $(\Vert T^*x \Vert \le \Vert Tx \Vert)$, is paranormal.

In what follows we assume that $T \in B(X)$ is a subjacent operator.

PROPOSITION 2. Let $T^kS = SQ$ for some positive integer k and S, $Q \in B(X)$, Q *quasinilpotent. Then TS = O.*

PROOF. We have $T^{kn}S = SQ^n$, $||T^{kn}Sx||^{1/n} \le ||S||^{1/n} ||Q^nx||^{1/n}$ $(n = 1, 2, ...,$ $x \in X$). Hence $r(T^k, Sx) = 0$. A result of Apostol [2] says that

$$
\{y \in X: r(T^k, y) = 0\} = \{y \in X: r(T, y) = 0\} \qquad (k = 2, 3, \ldots)
$$

and so $r(T, Sx) = 0$. Now (3.1) implies $TSx = 0$.

PROPOSITION 3. If $T^k x = Qx$ for some $x \in X$, integer k, and quasinilpotent *operator Q commuting with T, then Tx = O.*

PROOF. $T^{kn}x = O^{n}x$ ($n = 2, 3, ...$). Hence $r(T^{k}, x) = 0$ and $r(T, x) = 0$.

Applied to normal equivalent operators, this result together with Corollary 4 in Section I provides a further generalization of Fuglede-Putnam's commutation theorem (cf. $[11]$).

PROPOSITION 4. If $0 < r(T, x) < ||T||/C$ for some $x \in X$, then $K =$ $K(T, r(T, x))$ is a non-trivial hyperinvariant subspace for T.

 $(C = C(T)$ -- *see* (3.1); recall that $K(T, a) = \{y \in X : r(T, y) \le a\}.$

PROOF. $K \neq \{0\}$, because $0 \neq x \in K$. For every $y \in K$ we have

$$
||Ty|| \leq C||y||r(T, y) \leq Cr(T, x)||y||.
$$

Suppose now that K is dense in X. Then $||T|| \leq Cr(T, x) < ||T||$ - a contradiction.

Finally, let $S \in B(X)$, $ST = TS$. For every $y \in X$ and $n = 1, 2, ...$ we have $\|T^*Sy\|^{1/n} \leq \|S\|^{1/n} \|T^*y\|^{1/n}$, so that $r(T, Sy) \leq r(T, y)$. It follows that S maps K **in K.**

REFERENCES

1. E. Albrecht, *On some classes of generalized spectral operators,* Arch. Math., 30 (1978), 297-303.

2. C. Apostol, *Surl'dquivalence asymptotique des opdrateurs,* Rev. Roumaine Math. Pures Appl. 12 (1967), 601-607.

3. C. J. K. Batty, *Dissipative mappings and well-behaved derivations,* J. London Math. Soc. (2) 18 (1978), 527-533.

4. R. P. Boas, Jr., *Entire Functions,* Academic Press, New York, 1954.

5. F. F. Bonsall and J. Duncan, *Numerical Ranges of Operators,* Parts I and II, London Math. Soc. Lecture Notes 2 and 10, Cambridge, 1971 and 1973.

6. O. Bratteli and D. W. Robinson, *Unbounded derivations of C*-algebras II,* Commun. Math. Phys. 46 (1976), 11-30.

7. A. Browder, *On Bernstein's inequality and the norm of Hermitian operators,* Amer. Math. Monthly 78 (1971), 871-873.

8. P. R. Chernoff, *Optimal Landau-Kolmogorov inequalities for dissipative operators in Hilbert and Banach spaces,* Adv. in Math. 34 (1979), 137-144.

9. K. Clancey, *Seminormal Operators,* Lecture Notes in Math. 742, Springer-Verlag, 1979.

10. I. Colojoara and C. Foias, *Theory of Generalized Spectral Operators*, Gordon and Breach, New York, 1968.

11. M. J. Crabb and P. G. Spain, *Commutators and normal operators,* Glasgow Math. J. 18 (1977), 197-198.

12. N. Dunford and J. T. Schwartz, *Linear Operators,* Part I, Interscience Publishers, New York, 1958.

13. T. Furuta, *On the class of paranormal operators*, Proc. Japan Acad. Ser. A, Math. Sci. 43 (1967) , 594-598.

14. V. I. Istratescu, *Introduction to Linear Operator Theory,* Marcel Dekker Inc., New York, 1981.

15. V. E. Katznelson, The *norm of a conservative operator equals its spectral radius,* Mat. Issled. 5 (1970), No. 3, 186-189 (in Russian).

16. A. N. Kolmogorov, *On inequalities between the upper bounds of the successive derivatives of an arbitrary function on an infinite interval,* Uchen. Zap. Moskov. Gos. Univ. Mat. 30 (1939), No. 3, 3-16; Amer. Math. Soc. Transl. (1), No. 4 (1949), 1-19 and No. 2 (1962), 233-243.

17. B. Ja. Levin, *Distribution of Zeros of Entire Functions,* GITTL, Moscow, 1956; English transl., Amer. Math. Soc., Providence, R. I., 1964.

18. G. Lumer and R. S. Phillips, *Dissipative operators in a Banach space,* Pacific J. Math. 11 (1961), 679-698.

19. J. R. Partington, *The resolvent of a Hermitian operator on a Banach space,* J. London Math. Soc. (2) 27 (1983), 507-512.

20. I. J. Schoenberg and A. Cavaretta, *Solution of Landau's problem concerning higher derivatives on the hairline,* University of Wisconsin MRC Report No. 1050, March 1970. Also in Proc. Conf. Constructive Function Theory -- Varna 1970, Sofia, 1972.

21. A. M. Sinclair, The *norm of a Hermitian element in a Banach algebra,* Proc. Amer. Math. Soc. 28 (1971), 446-450.

22. S. B. Stechkin, *On inequalities between the upper bounds of the derivatives of an arbitrary* function on the halfline, Mat. Zametki 1 (1967), No. 6, 665-673. (Amer. Math. Soc. Transl. as Math. Notes.)

23. D. V. Widder, The *Laplace Transform,* Princeton, 1946.